CASE STUDENTSHIP AT DURHAM UNIVERSITY:
USING NEXT-GENERATION COMPUTER TECHNOLOGY
TO CREATE A VIRTUAL UNIVERSE

Main Supervisor: Prof. Richard Bower r.g.bower@durham.ac.uk (ICC)
Office: Ogden Centre West 216

204 Supervisor: Dr. Robert Maskell robert.maskell@intel.com (Intel Corp.)
Funding: EPSRC CASE studentship

To apply e-mail r.g.bower@durham.ac.uk

Project Description:

Recently the world-renowned computer simulation group at Durham’s Institute for Computational Cosmology (ICC) has
begun a close collaboration with the Intel computer and processor manufacturer. The aim of the collaboration is to demonstrate
novel computing technologies using cosmological computer simulations as a test-bed. We are now pleased to be able to offer a
PhD CASE studentship, jointly supervised by Robert Maskell, Intel’s director of research. Hosted at the ICC, this is primarily
a Computer Science PhD and will focus on computational aspects of cosmological simulations using the next-generation SWIFT
computer code.

The next steps in cosmological modelling, simulating larger volumes at greater detail, require an order of magnitude
increase in processing power or simulation efficiency. The SWIFT simulation code combines major improvements in algorithms
(e.g. the fast multipole method and multiscale time-step hierarchy), highly scalable parallelisation (fine-grained task-based
parallelism within nodes and asynchronous MPI communications between them) and SIMD vectorisation. The code delivers a
factor ~20x speed-up over current competing codes through our implementation of task-based parallelism and novel algorithms.

However, as the speed of the simulation rises, the bottleneck is quickly becoming the time it takes to output the simulation
data and process it. Our solution to this ”big data” problem is twofold: first, instead of writing a complete snapshot at fixed
intervals, we write only the changing quantities of interest for particles whenever they experience sufficient change; and secondly,
we stream this data into a continuous and incremental particle log on each node’s local storage in parallel with the rest of the
computation, thus avoiding IO latencies. In this way, output is generated piecewise, adapting to the speed of each particle’s
movement, and the output is committed to disk in the background during the computation without (a) stopping for I/O and
(b) overloading the I/O sub-system.

The second strand to the solution is to minimise the data that is output and stored for long periods on conventional
hard drives and to integrate post-processing tools within the simulation. Since most of the data products required for scientific
analysis (e.g. the rate at which stars form in a galaxy or their masses) only evolve slowly over the course of a simulation this
is an ideal oportunity to take advantage of new memory technologies. Instead of storing the ever-growing amount of raw data
and painfully post-processing it, in-flight analysis enables us to only permanently store the particle log data for scientifically
interesting regions, dramatically reducing the disk-space footprint of the simulation. Our solution will be based on Intels 3D
xPoint technology.

The benefits of these approaches have important applications beyond the cosmological computer simulations that the
ICC undertakes, and the PhD student will work closely with Intel to champion this approach across a wide range of scientific
disciplines.

A few useful links are given below, the attached poster summarises some of the innovations in SWIFT:
e The SWIFT cosmological simulation code webpage: www.swiftsim.com
o The SWIFT cosmological simulation code repository: https://gitlab.cosma.dur.ac.uk/swift/swiftsim
e A presentation summarizing the state of SWIFT:
http://www.intel.com/content/www/us/en/events/hpcdevcon/parallel-programming-track.html#swift
e Schaller M. et al., 2016, ‘SWIFT: Using task-based parallelism, fully asynchronous communication, and graph partition-
based domain decomposition for strong scaling on more than 100,000 cores, Proceedings of the PASC Conference, Lausanne,
Switzerland (https://arxiv.org/abs/1606.02738)
e Gonnet P., Chalk A., Schaller M., 2016, ‘QuickSched: Task-based parallelism with dependencies and conflicts (https:
//arxiv.org/abs/1601.05384)

www.swiftsim.com
https://gitlab.cosma.dur.ac.uk/swift/swiftsim
http://www.intel.com/content/www/us/en/events/hpcdevcon/parallel-programming-track.html#swift
https://arxiv.org/abs/1606.02738
https://arxiv.org/abs/1601.05384
https://arxiv.org/abs/1601.05384

N w<<=u._. __m_.m mo<m_ mmo_m Sox :@@ mm.o._...ojw_._mmom_U.SU_mBm in oom30_0@< mc03 as %m 83&:03 oﬁ @m_mx_mm
is being built as a demonstrator for the QuickSched fine-grained task par
QuickSched is open source and can be applied across a wide range of mm_:m:om domain

SWIFT a hydrodynamics code for
re-creating the Universe

Intel Parallel no.BU ng Centre,
Institute for Computational Cosmology,
Durham University, UK
Simulating the Universe with SWIFT

. QuickSched: SIMD
and Quick.

< Parallelism
swiftsi h m YT

imised to use SIMD
ism.
: task size is chosen to al ata to L2
tic population al. We repack data

ndly structures as they are sorted
need a large volume to capture range of structures in the Universe

but stars and black holes form on smallest scales

dynamic range of concurrent physical processes of up to 1,000,000 in
length scale
Tb memory and Imonth-long run times
+ demands very effective strong sc
these are extreme, but not unique to astrophysics

astrophysics is good open-access demonstrator for new technologies
+ close af ies with Molecular dynamics

_—

chronous MPI

*
..D:mn_nmn:mgn Fine

SWIFT uses a SonmS approach to
parallel comput integrator
Break work into simple pieces
Create graph showing links
between tasks
What must be done first ?
e. ‘dependencies’)
What cannot be done at the
same time as something
else? (i.e. ‘conflicts’)
Assign a priority density
ign of the

Each thread u_nxm up a task
and executes it.

When all tasks are done, the
calculation ends.

Grained Task Parallelism & UP’ .

on a (small) chunk of memory.
* Tasks operating on the same
memory conflict.
« Tasks can depend on each
others.
* For Smooth Particle
Hydrodynamics, we will have

tasks spanning one cell or over

two cel
he (millions of) tasks are then put
in a queue and our scheduler
(QuickSched) assigns them to the
different threads.

5« In SWIFT, the domain decomposition happens
along the cell edges, i.e. the particle cells are
A individual resources.

* We have to copy the particle data twice:

y —Once to send the particle positions for the
y density computation,
—Once to send the particle densities for the
force computation.
density
« Two send/recv tasks per border cel

of communication tasks.

Most experienced MPI
users will advise against
creating so many send/
recv tasks.

Most usual analysis and
benchmark tools do not

support our approach !
> Only Intel Trace Collector
does.

This has been tested on
up to 8192 nodes with 32
threads each, i.e. 262144
threads

nce all communication
s asynchronous, we don’t
really care about
latencies.

Spreading the
communication
throughout the
computation actually
reduces load on the
network.

