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Project Description:

Recently the world-renowned computer simulation group at Durham’s Institute for Computational Cosmology (ICC) has
begun a close collaboration with the Intel computer and processor manufacturer. The aim of the collaboration is to demonstrate
novel computing technologies using cosmological computer simulations as a test-bed. We are now pleased to be able to offer a
PhD CASE studentship, jointly supervised by Robert Maskell, Intel’s director of research. Hosted at the ICC, this is primarily
a Computer Science PhD and will focus on computational aspects of cosmological simulations using the next-generation SWIFT
computer code.

The next steps in cosmological modelling, simulating larger volumes at greater detail, require an order of magnitude
increase in processing power or simulation efficiency. The SWIFT simulation code combines major improvements in algorithms
(e.g. the fast multipole method and multiscale time-step hierarchy), highly scalable parallelisation (fine-grained task-based
parallelism within nodes and asynchronous MPI communications between them) and SIMD vectorisation. The code delivers a
factor ~20x speed-up over current competing codes through our implementation of task-based parallelism and novel algorithms.

However, as the speed of the simulation rises, the bottleneck is quickly becoming the time it takes to output the simulation
data and process it. Our solution to this ”big data” problem is twofold: first, instead of writing a complete snapshot at fixed
intervals, we write only the changing quantities of interest for particles whenever they experience sufficient change; and secondly,
we stream this data into a continuous and incremental particle log on each node’s local storage in parallel with the rest of the
computation, thus avoiding IO latencies. In this way, output is generated piecewise, adapting to the speed of each particle’s
movement, and the output is committed to disk in the background during the computation without (a) stopping for I/O and
(b) overloading the I/O sub-system.

The second strand to the solution is to minimise the data that is output and stored for long periods on conventional
hard drives and to integrate post-processing tools within the simulation. Since most of the data products required for scientific
analysis (e.g. the rate at which stars form in a galaxy or their masses) only evolve slowly over the course of a simulation this
is an ideal oportunity to take advantage of new memory technologies. Instead of storing the ever-growing amount of raw data
and painfully post-processing it, in-flight analysis enables us to only permanently store the particle log data for scientifically
interesting regions, dramatically reducing the disk-space footprint of the simulation. Our solution will be based on Intels 3D
xPoint technology.

The benefits of these approaches have important applications beyond the cosmological computer simulations that the
ICC undertakes, and the PhD student will work closely with Intel to champion this approach across a wide range of scientific
disciplines.

A few useful links are given below, the attached poster summarises some of the innovations in SWIFT:
e The SWIFT cosmological simulation code webpage: www.swiftsim.com
o The SWIFT cosmological simulation code repository: https://gitlab.cosma.dur.ac.uk/swift/swiftsim
e A presentation summarizing the state of SWIFT:
http://www.intel.com/content/www/us/en/events/hpcdevcon/parallel-programming-track.html#swift
e Schaller M. et al., 2016, ‘SWIFT: Using task-based parallelism, fully asynchronous communication, and graph partition-
based domain decomposition for strong scaling on more than 100,000 cores, Proceedings of the PASC Conference, Lausanne,
Switzerland (https://arxiv.org/abs/1606.02738)
e Gonnet P., Chalk A., Schaller M., 2016, ‘QuickSched: Task-based parallelism with dependencies and conflicts (https:
//arxiv.org/abs/1601.05384)
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